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INTRODUCTION

Over the last two decades, item response modeling has been widely used in

educational measurement research as well as by many large test publishers. An item

response model is a mathematical model that defines a relationship between the observed

examinee test performance and the unobserved traits or abilities assumed to underlie

performance on the test. Like any mathematical model, it has a set of assumptions. The

two basic assumptions are dimensionality and local independence.

Item response models that assume a single latent trait or ability are referred to as

unidimensional. In unidimensional item response models, it is assumed that only one

latent trait or ability is necessary to account for examinee test performance. In reality,

this assumption is extremely difficult to meet, because there are often other cognitive,

personality, and test-taking factors that might influence test performance. Therefore,

instead of strictly assuming one latent trait is being measured, it is usually assumed that

the test items are measuring a dominant component or factor that underlies performance

on the test. Models that assume more than one ability are necessary to account for

examinee test performance are referred to as multidimensional. A set of test items can be

constructed to measure a set of D latent traits or abilities and thus D latent traits define a

D-dimensional latent space, with each examinee's location in the latent space being

determined by the examinee's position on each latent trait.

The difficulty of choosing between unidimensional and multidimensional item

response models is manifest when information about how the test items were constructed

is unavailable. Factor analysis is one way to check the assumption of unidimensionality.

However, this approach has its own problems. For example, there might be a factor
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solution with too many factors resulting from using inappropriate correlation estimation

such as the phi correlation or the tetrachoric correlation (McDonald & Ahlawat, 1974).

When the knowledge of content domains specified by the test developer is available

(usually from a blueprint of the items), a multidimensional item response model should

be fitted to the test data if more than one ability is assumed to be measured. By

conducting such an analysis, one can get information about how strongly the dimensions

or the latent traits are correlated. It is often argued that when the traits are highly

correlated, a unidimensional item response model can represent the data as well as a

multidimensional model. But until we obtain such correlation information from the

multidimensional analysis, blindly fitting a unidimensional item response model to

multidimensional data sets can bias parameter estimation and person ability estimation

(Folk & Green, 1989).

There are also situations when high correlations among dimensions are achieved,

but factors other than the dimensionality of the traits being measured may have driven the

correlations up. Item dependence could be one of the factors. The second basic

assumption of item response modeling is local independence.

The assumption of local independence implies that given a person's ability, any

response to one item is independent of the responses to other items. If we denote 0 to be

the latent person ability and x, to be the observed response of the variable X, for item i,

the local independence assumption can be written as follows:

P(Xi = X2 = .X2 Xi =x, I 0) = n P (X =xi I 0) .

i.1

(1)

This is, in fact, a very strong assumption. Many tests constructed for a short period of 40

to 45 minutes, and monitored in a classroom, do not necessarily meet this requirement.
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For example, if a test is solely composed of short answer or multiple-choice questions

following written stimulus materials, it can be difficult to provide different stimulus

materials for each item with the time constraint. Therefore, one common practice is to

have each piece of stimulus material followed by a small number of items. Obviously,

the local independence assumption may be violated in this situation.

Many researchers have tried to address this dependence issue. Among them,

Wainer and Kiely (1987) introduced the idea of testlet in computerized adaptive testing.

The concept of testlet is to include the possibility of branching processes among items.

Rosenbaum (1984, 1988) introduced the idea of bundle independence and this paper is

going to follow this terminology, because it addresses the conditional independence

issue. His idea is to create a bundle of the items that are expected to be dependent and to

assume local independence across bundles. Suppose there is a set of C bundles and L. is

the number of items in each bundle; equation (1) is then modified in the following way:

P(X, = xl, X2 = x2,. ..,X1 = x1 I 0) = f P(Xc = x, 10), and Ilc = I. (2)
C=I

The distinction between the two equations is that x, is an individual response on one item

and xc is a response pattern on a set of items in a bundle. In this sense, the number of

response categories xc can take will generally be larger than that x, can. For instance, in a

test that consists of all multiple-choice items, x, can be 0 (incorrect) or 1 (correct). For a

bundle of just two items, there can be four distinctive response patterns: (0 0), (1 0), (0

1), and (1 1). When the number of response categories in each item and the number of

items in each bundle increase, the number of response patterns each bundle can possibly

have will increase dramatically. A bundle of three polytomous items that each have 5

categories can have a maximum of 53=125 distinctive response patterns. This is why
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modeling interdependent items in a bundle can be comp- heated in terms of expressing the

probability.

When a local dependence problem occurs in a set of test items that measure more

than one latent ability, the interdependence of the items might cause the dimensions to be

highly correlated, and thus multidimensional analysis will provide the misleading result

that only one dimension needs to be modeled. By applying the concept of item bundles

to multidimensional analysis, we can fit models that take account of multiple dimensions

and item dependence simultaneously. The purpose' of this paper is to investigate a dataset

collected by the Science Education for Public Understanding Program (SEPUP) that has

both dimensionality and dependence characteristics. An item bundle model nested in a

multidimensional random coefficients multinomial logit (MRCML) model (Adaths,

Wang & Wilson, 1997) is applied to this data.

MODELS

The MRCML model is an extension of the unidimensional random coefficients

multinomial logit (RCML) model (Adams & Wilson, 1996). The RCML model is a

generalized Rasch model that provides the flexibility of customizing models for

particular test situations. To keep the previously-used notation, 0 is the latent variable

and I is the total number of items, the probability of a response in category j of item i is

modeled as

xp(be +
P(X = le) = K,

y

E exp(kk 9 + -dace )
k=1

where K, = total number of response categories in item i ,

6

(3)
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A = (a;,,...,a;K,,a21 . , , . , 5,1K, Y , a design matrix ofp columns, relating

observed responses to item parameters,

= (b b, 5 a score vector of the response category from 1 to K for item i ,

e = Y , a vector ofp free item parameters,

Ziac= a design vector in matrix A for i = 1, ... 5 I; k= 1, , K, .

The score vector b, provides the flexibility of non one-to-one mapping between the

category and the score that is allocated to that category. It can be collected into a large

vector b = (b1, , 61Ki , 621 , ,62K2 , ,I;1, 5
which allows different numbers of

categories for different items. This provides the opportunity to calibrate both

dichotomous and polytomous items at the same time. The vector of free parameters e

and the design vector ad( , which is a linear combination of vector e determine how the

model is specified. The vector e includes all the parameters that characterize the items,

such as item difficulty, step difficulty, facet, interaction, etc. The design vector affords

the possibilities of specifying customized models.

By extending the single latent variable to a D-dimensional latent space and

collecting 0 into a vector 0 .(0,502,...,0), we can write the MRCML model as

follows:

exp(Eih'0 + ei,"; )
P(X, j; A,B e I = K,

Eexp(giikol-aiike)
k=1

(4)

The scoring vectors r)11, ( .biki,bik2, bikD can be collected into a scoring sub-matrix

13; = (b,11,b,,...,6,1K,)' for item i and furthermore into a larger scoring matrix
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B =(B; ,B'2,...,B;)' for the whole test. The distinction between equations (4) and (3) is

that by and 6' are scalars in equation (3) whereas they are vectors in equation (4).

Now consider item bundles rather than individual items in the multidimensional

case. Let Kc be the total number of distinctive response patterns in item bundle c. The

probability of one response pattern/ of bundle c can be modeled as

exp(E0 )
P(Xc = j;A,Bc,e10)=

Eexpcco + ack
k=1

(5)

As mentioned above, when the number of categories in the item and the number of items

in the bundle increase, the denominator of equation (5) will be a long expression that

takes into account all possible response patterns.

EXAMPLE

Data

The data set this paper will explore is from the field test of an assessment system

for a yearlong middle school science curriculum, Issues, Evidence, and You (IEY) during

the 1994-1995 school year. The curriculum was developed by the Science Education for

Public Understanding Program (SEPUP). The assessment system includes SEPUP

variables, assessment tasks, scoring guides, link tests and other components (Roberts,

Wilson & Draney, 1997). There are,five SEPUP variables that represent student learning

corresponding to the core concepts of IEY. There are Designing and Conducting

Investigation (DCI), Evidence and Tradeoffs (ET), Understanding Scientific Concepts

(UC), Communicating Scientific Information (CSI) and Group Interaction (GI).

Appendix A describes the SEPUP variables and sub-parts known as elements for each
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variable. The assessment tasks are performance assessments in which students were

asked to produce a number of complex performances based on assessment activities.

Scoring rubrics were established for each variable, listing the criteria for levels of student

performance. The link tests are additional assessment activities for teachers to use at

major course transitions that are also based on the SEPUP variables. During the field test

year, data were collected for only four of the five SEPUP variables, because satisfactory

methods for collecting data on the variable, Group Interaction, were not yet developed. It

is the case in this field test data that a single piece of response was scored on multiple

elements of a variable and even multiple variables. Teachers used the scoring guides to

rate student performance into five ordered, qualitatively different categories, scored 0

through 4.

Previous analysis has been done on this data set by Draney and Peres (1998),

investigating the multidimensional nature of the data, the change of student growth and

rater severity over time. However, the problem of item dependence is still evident and

needs to be examined.

Analysis I: Dimensionality

In the first set of analysis, a unidimensional model as well as a multidimensional

model were fitted to the link test portion of the 1994-1995 field test data, using the

(M)RCML program (Adams, Wilson & Wang, 1997). Appendix B shows the item

number, the variable/element each item was supposed to measure in each link test and the

linking item structure across three tests. As is apparent, most of the items were scored on

multiple elements or variables. A subset of the observed scores was selected. The

9
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leftmost column in Appendix B indicates the numbering of the observed scores chosen

for the analysis. Two factors were considered in the process of selecting these observed

scores. The variable CSI was dropped from the analysis, since it was not assessedoften.

In order to carry out a multidimensional analysis, at least a reasonable number of

observations should be obtained for each dimension. This resulted in three dimensions,

DCI, ET and UC. In addition, a maximum of three scores were selected from a single

item to keep the number of categories in each bundle manageable. In fact, after removing

the variable CSI, only two items (LinkTest 2 item 1 and LinkTest 3 item 1) have more

than three scores. They both have two scores on DCI, one on UC and one on ET. The

decision was made to choose one of the two scores on DCI, as they measure the same

element. An alternative approach could be taking the average of the two scores. This

will involve a decision between rounding and truncating.

From now on, the observed scores will be referred to as items, and the original

items in the link tests will be referred to as bundles labeled from L 1 il (LinkTest 1 item 1)

to L3i3 (LinkTest 3 item 3). There are 22 items and 10 bundles in total.

As the link tests were given at three different times throughout the school year of

1994-1995, it seems reasonable to assume three different latent abilities on each latent

dimension for an individual student. This is achieved by differentiating person A at time

point 1 from person A at time point 2. Therefore, the data organization for this analysis

includes three repetitions of 1383 students who took the link tests. The following chart

shows how the data was organized. There are 4149 (=-1383x3) rows (cases) and 22

columns (items)'.

The empty cells are systematic missing data.

10
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ID Responses

1' 1383 Link Test 1

2"d 1383 Link Test 2

3rd 1383 Link Test 3

Model 1: Unidimensional Rating Scale Model

The data set consists of polytomous responses, thus, in addition to the item

location parameters, the step difficulties of moving from one response category to a

higher one in each item should be modeled. As items measuring one variable were

scored according to the scoring rubric for that variable, it is assumed that the step

difficulties do not vary across those items. This is the standard approach used in all

SEPUP analysis. Therefore, a mixed rating scale model was fitted to the data. The item

parameter vector e contains location parameters (8) of 22 items and three sets of step

parameters (t), one set for each variable. Each variable has five score categories and the

mean of the step parameters is constrained to zero, so only three step parameters are

estimated per variable per test time; this yields a total of 31 (=22+3x3) parameters in

vector e . Item frequency statistics show that for almost half of the items, no student

obtained the highest response, 4. In particular, these items are all from the bundles that

have three items. The two items left in the three-item-bundles that have a few responses

of 4 are item 7 and 22. These responses of 4 (about 0.01% of 1383 cases) were then

recoded to missing so that within each bundle, items have an equal number of response

categories. Thus, the scoring vector E contains a combined repetition of 0, 1, 2, 3, 4 and

0, 1, 2, 3. Appendix C shows the basic structure of the design matrix A. The estimates

and standard errors of the parameters are listed in the second and third columns of

Appendix D.

Model 2: Between-Item Multidimensional Rating Scale Model

11.
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Since the difference between the RCML and MRCML models only lies in the

scoring matrix, a multidimensional mixed rating scale model was then fitted to the data

using the same design matrix. The scoring matrix B has 3 columns (variables), indicating

the dimension each item is supposed to measure. This is called a between-item

multidimensional model (Adams, Wilson & Wang, 1997), because each item was only

scored on one variable. There are again 31 parameters. In the fourth and fifth columns

of Appendix D are the estimates and standard errors of these parameters. The following

pairwise correlations of the three dimensions were calculated from the variance and

covariance matrix (Appendix I) estimated by the (M)RCML program.

DCI ET UC

DCI 1

ET 0.73 1

UC 0.76 0.82 1

Discussion I: Model 1 vs. Model 2

The correlations show that the three dimensions of latent ability are fairly closely

related. The last column in Appendix D lists the differences of the parameter estimates

from Model 1 and Model 2. They do not differ very much. It is still arguable whether

multidimensional analysis is necessary because it might be the case that unidimensional

analysis is sufficient. Therefore, a comparison of the fit statistics of the two models using

the change in the likelihood ratio x2 was performed. Since the unidimensional rating

scale model is a sub-model of the multidimensional rating scale model, a statistical

significance test can be used to check which model fits the data better. The following

table shows the deviance and degrees of freedom of the two models, and their

differences.
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Model 1 Model 2 Difference

Deviance 28628.22 28522.67 105.55

DF 32 (=31+1) 37 (=31+3+3) 5

In both models, one assumption was made for the person ability distribution. It is

assumed to have a normal distribution, with a mean of 0. Therefore, besides the item

parameters, there is one more parameter, the variance of the person ability distribution, to

be estimated in Model 1. In Model 2, since there are three dimensions, there are six more

parameters to be estimated, three for the variances of the person ability distributions and

three for the covariances between any two dimensions. The multidimensional model fits

the data significantly better than the unidimensional one at a=0.01. This is consistent

with the conclusion drawn by Draney and Peres on the entire SEPUP 1994-1995 field test

data2.

Analysis II: Dependence

Let us now investigate the item dependence issue. In order to perform the item

bundle analysis, the data were recoded so that one score was given to each response

pattern in a bundle. At most, three items were included in one bundle in order to make

the recoding process manageable. For a bundle of two items, there are 52=25 categories

coded from 0 to 24; and for a bundle of three items, there are 43=64 categories coded

from 0 to 63. Appendix E shows the recoding schema3.

Model 3: Within-Item Multidimensional Item Bundle Model with Interactions

This time the item parameter vector contains some interaction parameters in

addition to the regular location and step parameters. In a bundle of two items, 2-way

2 Draney and Peres' study was carried out using the ConQuest program (Wu, Adams & Wilson, 1997).
3 The cross-tab frequency statistics show that not every response category in the bundle has observations.

13
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interactions (w) take place when the examinee gets the same score on both items. In a

bundle of three items, there are additional 3-way interactions (u) when the examinee gets

the same score on all three items. Among the 10 bundles, L2i2 and L2i5 just have one

item in the bundle, and there are 4 bundles of two items and 4 bundles of three items.

The first table in Appendix F shows a sub design matrix for a bundle that consists of two

items. This is following the approach taken by Wilson and Adams (1995), and Hoskens

and De Boeck (1997) to investigate local dependence characteristics. In particular, in

Hoskens and De Boeck's study, they examined the interaction effects (co) in addition to

the main effects (6) of the items. They did not model step parameters since their data set

had only dichotomous items. In their analysis, the main effects are equivalent to the item

location parameters in this analysis, and instead of modeling one location parameter per

bundle, location parameters are still estimated on the item level. This is consistent with

the recoding schema. However, the step parameters are estimated on the bundle level.

Consider the Partial Credit model (Masters 1982) for two independent items with 5

response categories. After recoding the data following the 2-item-bundle recoding

scheme, we will get a design matrix listed in the second table of Appendix F. The step

parameters for the first and second items are indexed by T1. and r2 respectively. By

comparing the two design matrices in Appendix F, we notice that the step parameters

estimated on the bundle level are simply the additions of the corresponding step

parameters estimated on the item level in the independent case. For instance, Ti in the

first table is equivalent to the sum of Ti and T21 in the second table. In total, there are 3

steps for each two-item-bundle and one-item-bundle, and 2 steps for each three-item-

bundle, because the step parameters are constrained to have a mean of 0. After adding

14



13

the interaction parameters for each bundle, we finish modeling the dependence within a

bundle. The interaction parameters indicate the additional difficulty (or easiness) of

getting the same scores on two items, or three items in the bundle. The term "interaction"

here is analogous to the interaction effect in ANOVA. This yielded a total of 60

(=226-1-(3x6+2x4)T+8w+4) item parameters. The scoring matrix B has 3 columns, with

each column indicating one dimension. This time, it is a within-item multidimensional

model, because some of the bundles were loaded on more than one dimension. Appendix

G lists the parameter estimates and standard errors obtained from the (M)RCML

program. The following correlation matrix was also calculated from the variance and

covariance matrix (Appendix I).

DCI ET UC

DCI 1

ET 0.67 1

UC 0.67 0.89 1

Discussion II: Model 2 vs. Model 3

The correlations obtained from the item bundle analysis differ a bit from those

based on the multidimensional analysis. The correlation between DCI and ET, DCI and

UC dropped while the correlation between ET and UC increased. By modeling the

dependence between items, associations between the latent dimensions DCI and ET, DCI

and UC were weakened. In fact, the skills required for designing and conducting

investigations are quite different from using evidence to make tradeoffs and

understanding concepts. The variables ET and UC belong to the domain of content

knowledge in which the students are required to refer to the materials and concepts

learned in the curriculum, whereas DCI belongs to the domain of process knowledge in

15
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which skills of "performing" are required. It is possible that the multidimensional item

bundle analysis makes a better separation of the two knowledge domains because the

dependence between these two have been taken into account. It is more difficult to

explain why the correlation between ET and UC increased at this stage, though both ET

and UC are content variables. Future work with simulated data sets can be done to

investigate the likelihood of increased correlation within the same domain (content or

process) and decreased correlation across the domains.

All the 2-way interaction parameter estimates from this model are negative. This

implies that after modeling the dependence of the items within a bundle, items became

easier than they were when the dependence was ignored. This additional easiness might

be the evidence of the existence of item dependence. As teachers gave several scores on

different variables/elements for a single piece of work, it is possible that the score he/she

assigned on the second variable/element was affected by what he/she assigned on the first

one. None of the 3-way interaction parameter estimates is statistically different from 0.

This may suggest that modeling only 2-way interactions is sufficient for this data set.

Model 4: Multidimensional Item Bundle Model without 3-way Interactions

This model was fitted to the data based on the previous results. The vector e

now has 56 parameters, after removing the four 3-way interaction parameters. The

scoring matrix stays the same.

Model 5: Multidimensional Item Bundle Model with All 2-way Interactions

To further investigate the interaction effects on any two items in a bundle that has

three items, a modified bundle model was fitted to the data by differentiating the 2-way
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interactions from each other within such bundles. In Model 3, only one 2-way interaction

was used for each bundle containing three items. That was based on the hypothesis that

getting the same score on any two of the three items may make a difference. However,

this is not quite appropriate for the bundle that measures three different dimensions. For

example, it is not necessarily the case that getting scores of 3 on both DCI and UC is the

same as getting scores of 3 on both ET and UC. Therefore, three unique 2-way

interactions were modeled for all 3-item-bundles. This resulted in a total of 64

parameters. Appendix H lists the estimates and standard errors.

Discussion III: Model 3 vs. Model 4 & Model 5

Similar to the multidimensional analysis, in addition to the item parameters, six

parameters to describe the person distributions (3 variances and 3 covariances) need to be

estimated in the item bundle analysis. The fit of Model 3, 4 and 5 are displayed as

follows:

Model 3 Model 4 Model 5

Deviance 26065.60 26053.43 26002.78

DF 66 (=60+3+3) 62 (=56+3+3) 70 (=64+3+3)

It is confirmed that 3-way interaction is not necessary for this data set, as Model 3 is not

statistically better than Model 4. On the other hand, Model 5 in which 2-way interactions

were differentiated in 3-item-bundles shows significant improvement in the deviance at

a=0.01.

The correlation matrices from Model 5 do not differ much from that of Model 3

(Appendix I). The item location and step estimates from these models are also similar to

each other. Let us examine the 2-way interactions of Model 5 in detail. First of all, the

17
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estimates of the interactions are all negative, except for two. They are the interactions

between items 5 and 6, and 13 and 14, however, these estimates are not significantly

different from 0. In addition, in the last bundle L3i3, two of the three interaction

estimates are insignificant. Even though there is no systematic pattern that which

pairwise interaction always yields an easier (or more difficult) estimate, modeling three

unique 2-way interactions reveals that getting the same score on some variables/elements

may be easier than getting the same score on other variables/elements. There are two

interactions that have relatively large negative values, bundle L 1 i2 and LI i4. These are

the bundles measuring a single dimension. The dimensions they are measuring, UC and

ET respectively, are both about content knowledge but are about different pieces of

content knowledge. This might imply that for variables that are targeting content

knowledge, teachers' ratings on one element are strongly influenced by their ratings on

other elements.

CONCLUSION

The SEPUP 1994-1995 link tests have both multidimensionality and item

dependence issues. Because the performance assessment was rather time-consuming,

only a small number of items could be given to each student during the testing period. To

make the most of these students' responses, each item was specifically designed to be

multidimensional, and scored on a number of different variables/elements. Analysis that

models only dimension or dependence alone is not adequate. A multidimensional item

bundle analysis suggests that most of the items are dependent within each bundle, no

matter whether the bundles are unidimensional or multidimensional. Interaction effects

YS
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do exist for most of the pairwise score combinations. In particular, the effects are more

prominent for the bundles in which items measure content knowledge. 'Taking the item

dependence into account may make the correlation among latent dimensions more

accurate and meaningful.

LIMITATION & SUGGESTION

Theoretically, violation of local independence can lead to inaccuracy of parameter

estimation (Chen & Thissen, 1996) and of person proficiency estimation (Wilson, 1988).

For item bundle analysis, estimating 3 dimensions using the quadrature method of

numerical integration is extremely time consuming. Therefore, a relatively relaxed

convergence criterion, 0.005, was used for the three bundle analyses compared to 0.001,

which was used in unidimensional and multidimensional analysis. Therefore, it is hard to

compare the accuracy of the parameter estimates obtained from Model 2 and Model 5.

As for the interpretation of location and step estimates, they cannot be compared either,

because the step parameters were estimated on a "variable" level in the multidimensional

model whereas they were estimated on a "bundle" level in the item bundle model.

Additionally, the data containing students' scores on each variable or element were

recoded in the item bundle analysis. Due to this change in the data, the multidimensional

model and the bundle models are not hierarchically ordered, so comparisons of the fit

statistics of these models cannot be carried out using a likelihood ratio test.

Further examination of person ability distributions across dimensions and over

time should be done for all the models. Fit statistics of items as well as of persons should
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also be checked. These results have not be obtained from the current analysis due to the

limited output options in the (M)RCML program.

Another limitation of this analysis is that although test reliability can be

calculated, it is not the one needed here; because not all the items were included in the

analysis due to the fact that each item bundle used three items at most.

Future analysis can be conducted by creating models derived from model 5,

adding more interaction parameters that characterize the difficulty of getting two or three

scores on adjacent response categories. Individual response patterns show that it is rarely

the case that someone is scored more than three categories apart on different variables or

elements.

Finally, as mentioned before, simulation work on data that have both

dimensionality and dependence features is worth pursuing.
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Appendix A. SEPUP Variables and Elements

Designing and Conducting Investigation (DCI): Designing a scientific experiment to
answer a question or solve a problem, selecting appropriate laboratory procedures to
collect data, accurately recording and logically displaying data (e.g. in graphs and
tables), and analyzing and interpreting results of an experiment.

1. designing investigation (di)
2. selecting and recording procedures (srp)
3. organizing data (od)
4. analyzing and interpreting data (aid)

Evidence and Tradeoffs (ET): Identifying objective, relevant scientific evidence, and
evaluating the advantages and disadvantages of different possible solutions to a
problem based on the evidence available.

1. using evidence (ue)
2. using evidence to make tradeoffs (uemt)

Understanding Concepts (UC): Recognizing and applying relevant scientific concepts
(e.g. threshold, measurement, properties of matter) to an investigation or problem
solution.

1. recognizing relevant content (rrc)
2. applying relevant content (arc)

Communicating Scientific Information (CSI): Organizing and presenting results,
arguments, and conclusions in a way that is free of technical errors and effectively
communicates with the chosen audience.

1. organization (org)
2. technical aspects (ta)

Group Interaction (GI): Developing time management skills, the ability to work
together with teammates to complete a task (such as a lab experiment) and to share
the work of an activity.
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Appendix B. Link Test Structure

Link Test 1
Number Item Variable Element Links back to number

1 1 DCI di

2 1 ET uemt
3 2 UC rrc
4 2 UC arc

5 3 DCI di

6 3 DCI srp
7 3 DCI aid
8 4 ET ue

9 4 ET uemt
4 CSI org
4 CSI ta

10 5 ET ue
11 5 ET uemt

Link.Test 2
Number Item Variable Element Links back to number

1 DCI di
12 1 UC rrc
13 1 DCI di

14 1 ET uemt
15 2 UC arc

3 DCI di 5

3 DCI srp 6

3 DCI aid 7

4 CSI org
4 CSI ta
4 ET ue 8

4 ET uemt 9

16 5 UC arc

Link Test 3
Number Item Variable Element Links back to number

1 DCI di
17 1 UC rrc
18 1 DCI di
19 1 ET ' uemt

2 UC arc 16

20 3 DCI srp
21 3 DCI od
22 3 DCI aid

4 ET ue 10

4 ET uemt 11

24
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Appendix C. Design Matrix A in Analysis I4

Link Test 1
8

Link Test 2
8

Link Test 3
8

DCI
T

ET
T

UC
T

Link o
-1

o
o

o
o

o
-1

o
o

o
o

Testl -2 0 0 -1 -1 0

-3 0 0 -1 -1 -1

-4 0 0 0 0 0

0 0 0 0 0 0

0 -1 0 -1 0 0

0 -2 0 -1 -1 0

0 -3 0 -1 -1 -1

0 -4 0 0 0 0

0 0 0 0 0 0

0 0 -1 -1 0 0

0 0 -2 -1 -1 0

0 0 -3 -1 -1 -1

0 0 -4 0 0 0

Link 0 0 0 0 0 0

-1 0 0 -1 0 0

Test2 -2 0 0 -1 -1 0

-3 0 0 0 0 0

0 0 0 0 0 0

0 -1 0 -1 0 0

0 -2 0 -1 -1 0

0 -3 0 0 0 0

0 0 0 0 0 0

0 0 -1 -1 0 0

0 0 -2 -1 -1 0

0 0 -3 0 0 0

Link 0

-1

0

0

0

0

0

-1
0

0

0

0

Test3 -2 0 0 -1 -1 0

-3 0 0 0 0 0

0 0 0 0 0 0

0 -1 0 -1 0 0

0 -2 0 -1 -1 0

0 -3 0 0 0 0

0 0 0 0 0 0

0 0 -1 -1 0 0

0 0 -2 -1 -1 0

0 0 -3 0 0 0

4 For the purpose of visual clarity, repetitions of 0 are omitted in the table. The negative sign makes the

interpretation of the parameters more meaningful. For instance, a low value of an item location parameter
estimate means that item is relative easy.
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Appendix D. Parameter Estimates from Analysis I

Par.

Modell
Unidimensional

Description Estimate S.E.

Model 2

Multidimensional
Estimate S.E.

of
Est.

5 1 (DCI) 0.218 0.033 0.225 0.033 -0.007
2 (ET) 0.779 0.035 0.809 0.035 -0.030
3 (UC) 0.211 0.029 0.242 0.028 -0.031
4 (UC) 0.464 0.031 0.530 0.031 -0.066
5 (DCI) 0.427 0.023 0.456 0.023 -0.029
6 (DCI) -0.203 0.018 -0.222 0.018 0.019
7 (DCI) 0.544 0.024 0.581 0.024 -0.037
8 (ET) 0.590 0.028 0.615 0.028 -0.025
9 (ET) 1.181 0.032 1.240 0.032 -0.059

10 (ET) -0.238 0.025 -0.267 0.025 0.029
11 (ET) 0.600 0.030 0.618 0.030 -0.018
12 (UC) -0.422 0.028 -0.471 0.028 0.049
13 (DCI) -0.077 0.026 -0.090 0.026 0.013
14 (ET) 0.879. 0.040 0.938 0.040 -0.059
15 (UC) 0.435 0.030 0.491 0.030 -0.056
16 (UC) 0.743 0.030 0.848 0.030 -0.105
17 (UC) 0.404 0.049 0.484 0.049 -0.080
18 (DCI) 0.232 0.042 0.245 0.042 -0.013
19 (ET) 1.429 0.067 1.499 0.067 -0.070
20 (DCI) -0.104 0.037 -0.116 0.037 0.012
21 (DCI) -0.215 0.036 -0.236 0.036 0.021
22 (DCI) 0.741 0.051 0.796 0.051 -0.055

T DCI 1 -0.293 0.035 -0.382 0.035 0.089
DCI 2 -0.487 0.045 -0.492 0.045 0.005
DCI 3 -0.859 0.125 -0.861 0.125 0.002
ET 1 -1.341 0.040 -1.445 0.040 0.104
ET 2 -0.981 0.047 -1.009 0.047 0.028
ET 3 0.188 0.053 0.224 0.053 -0.036
UC 1 -1.403 0.039 -1.622 0.039 0.219
UC 2 -0.129 0.054 -0.170 0.054 0.041
UC 3 0.291 0.076 0.361 0.076 -0.070
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Appendix E. Data Recoding Tables

Two-Item-Bundle
Item 1

Item 2

0 1 2 3 4
0 0 1 2 3 4

1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19
4 20 21 22 23 24

Three-Item-Bundle

Item 3 = 0
Item 1

Item 2

0 1 2 3

0 0 1 2 3

1 4 5 6 7
2 8 9 10 11

3 12 13 14 15

Item 3 = 1
Item 1

Item 2

0. 1 2 3

0 16 17 18 19
1 20 21 22 23
2 24 25 26 27
3 28 29 30 31

Item 3 = 2
Item 1

Item 2

0 1 2 3
0 32 33 34 35
1 36 37 38 39
2 41 41 42 43
3 44 45 46 47

Item 3 = 3
Item I

Item 2

0 1 2 3
0 48 49 50 51
1 52 53 54 55
2 56 57 58 59
3 60 61 62 63

5 2-way interactions are shown in bold numbers and 3-way interactions are shown in italic numbers.

27
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Appendix F.

Design Matrix for a Two-Item-Bundle in Analysis II
St 82 Ti T2 T3 CO

0 0 0 0 0 -1
-1 0 -1 0 0 0
-2 0 -1 -1 0 0
-3 0 -1 -1 -1 0
-4 0 0 0 0 0

0 -1 -1 0 0 0
-1 -1 -2 0 0 -1
-2 -1 -2 -1 0 0
-3 -1 -2 -1 -1 0
-4 -1 -1 0 0 0

0 -2 -1 -1 0 0
-1 -2 -2 -1 0 0
-2 -2 -2 -2 0 -1
-3 -2 -2 -2 -1 0
-4 -2 -1 -1 0 0

0 -3 -1 -1 -1 0
-1 -3 -2 -1 -1 0
-2 -3 -2 -2 -1 0
-3 -3 -2 -2 -2 -1
-4 -3 -1 -1 -1 0

0 -4 0 0 0 0
-1 -4 -1 0 0 0
-2. -4 -1 -1 0 0

-3 -4 -1 -1 -1 0

-4 -4 0 0 0 -1

Design Matrix, for Two Independent Items with 5 Response Categories
61 52 Ti 1 112 113 121 122 123

0 0 0 0 0 0 0 0
-1 0 -1 0 0 0 0 0
-2 0 -1 -3. 0 0 0 0
-3 0 -1 -1 -1 0 0 0
-4 0 0 0 0 0 0 0

0 -1 0 0 0 -1 0 0
-1 -1 -1 0 0 -1 0 0
-2 -1 -1 -1 0 -1 0 0
-3 -1 -1 -1 -1 -1 0 0
-4 -1 0 0 0 -1 0 0

0 -2 0 0 0 -1 -1 0
-1 -2 -1 0 0 -1 -1 0
-2 -2 -1 -1 0 -1 -1 0
-3 -2 -1 -1 -1 -1 -1 0
-4 -2 0 0 0 -1 -1 0

0 -3 0 0 0 -1 -1 -1
-1 -3 -1 0 0 -1 -1 -1
-2 -3 -1 -1 0 -1 -1 -1
-3 -3 -1 -1 -1 -1 -1 -1
-4 -3 0 0 0 -1 -1 -1

0 -4 0 0 0 0 0 0
-1 -4 -1 0 0 0 0 0
-2 -4 -1 -1 0 0 0 0
-3 -4 -1 -1 -1 0 0 0
-4 -4 0 0 0 0 0 0
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Appendix G. Parameter Estimates from Model 3

Par. Description Estimate S.E. Par. Description6 Estimate S.E.
6 1 (DCI) 0.538 0.094 Llil -0.469 0.099

2 (ET) 1.207 0.098 Lli2 -1.704 0.104
3 (UC) 0.142 0.071 Lli3 -0.463 0.069
4 (UC) 1.107 0.086 Lli4 -1.551 0.073
5 (DCI) 0.433 0.037 Lli5 -0.549 0.095
6 (DCI) -0.298 0.032 L2i1 -0.397 0.101
7 (DCI) 0.566 0.037 L3i1 -0.413 0.152
8 (ET) 0.143 0.051 L3i3* -0.208 0.143
9 (ET) 1.222 0.065 u Lli3* 0.268 0.194

10 (ET) -0.140 0.076 L2i1* 0.042 0.274
11 (ET) 1.295 0.087 L3i1* -0.205 0.433
12 (UC) -0.374 0.044 L3i3* -0.165 0.414
13 (DCI) -0.207 0.046
14 (ET) 0.425 0.050
15 (UC) 0.643 0.069
16 (UC) 1.008 0.069
17 (UC) 0.318 0.079
18 (DCI) 0.116 0.077
19 (ET) 1.030 0.089
20 (DCI) -0.134 0.067
21 (DCI) -0.243 0.066
22 (DCI) 0.709 0.078

T Llil 1 -1.637 0.110
.Llil 2 -1.049 0.126
Llil 3 -0.610 0.122
Lli2 1 -2.376 0.068
Lli2 2 -0.572 0.077
Lli2 3 0.618 0.090
Lli3 1 -0.230 0.042
Lli3 2 -0.505 0.052
Lli4 1 -1.980 0.058
Lli4 2 -0.720 0.063
Lli4 3 0.460 0.073
Lli5 1 -2.258 0.094
Lli5 2 -1.680 0.105
Lli5 3 0.097 0.092
L2i1 1 -0.433 0.054
L2i1 2 0.027 0.075
L2i2 1 -1.976 0.110
L2i2 2 -0.776 0.139
L2i2 3 0.454 0.159
L2i5 1 -2.179 0.094
L2i5 2 -0.373 0.125
L2i5 3 0.396 0.157
L3i1 1 -0.420 0.087
L3i1 2 -0.249 0.115
L3i3 1 -0.059 0.093
L3i3 2 -0.372 0.120

6
An asterisk indicates that the parameter estimate is not statistically different from 0.
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Appendix H. Parameter Estimates from Model 5

Par. Description Estimate S.E. Par. Description' Estimate S.E.
5 1 (DCI) 0.529 0.093 W Llil -0.471 0.099

2 (ET) 1.192 0.098 Lli2 -1.714 0.103
3 (UC) 0.133 0.070 Lli3(5/6)* 0.000 0.079
4 (UC) 1.081 0.086 Lli3(6/7) -0.467 0.074
5 (DCI) 0.364 0.038 Lli3(5/7) -0.639 0.065
6 (DCI) -0.271 0.032 Lli4 -1.549 0.073
7 (DCI) 0.561 0.040 L1i5 -0.549 0.094
8 (ET) 0.136 0.051 L2i1(12/13) -0.732 0.097
9 (ET) 1.212 0.065 L2i1(13/14)* 0.102 0.109

10 (ET) -0.149 0.075 L2i1(12/14) -0.490 0.105
11 (ET) 1.283 0.087 L3i1(17/18) -0.375 0.165
12 (UC) -0.389 0.046 L3i1(18/19) -0.727 0.155
13 (DCI) -0.139 0.048 L3i1(17/19) -0.420 0.163
14 (ET) 0.386 0.050 L3i3(20/21)* -0.213 0.152
15 (UC) 0.629 0.068 L3i3(21/22) -0.568 0.155
16 (UC) 0.987 0.068 L3i3(20/22)* -0.075 0.162
17 (UC) 0.324 0.081
18 (DCI) 0.068 0.080
19 (ET) 1.030 0.091
20 (DCI) -0.109 0.070
21 (DCI) -0.304 0.069
22 (DCI) 0.727 0.080

T Llil 1 -1.626 0.110
Llil 2 -1.041 0.126
Llil 3 -0.608 0.121
Lli2 1 -2.332 0.068
Lli2 2 -0.560 0.076
Lli2 3 0.594 0.090
Lli3 1 -0.225 0.040
Lli3 2 -0.501 0.052
Lli4 1 -1.980 0.058
Lli4 2 -0.719 0.063
Lli4 3 0.461 0.073
Lli5 1 -2.253 0.093
Lli5 2 -1.674 0.105
Lli5 3 0.099 0.092
L2i1 1 -0.403 0.051
L2i1 2 0.021 0.074
L2i2 1 -1.953 0.110
L2i2 2 -0.767 0.139
L2i2 3 0.445 0.158
L2i5 1 -2.151 0.093
L2i5 2 -0.365 0.125
L2i5 3 0.385 0.156
L3i1 1 -0.416 0.083
L3i1 2 -0.250 0.114
L3i3 1 -0.058 0.089
L3i3 2 -0.369 0.119

7 An asterisk indicates that the parameter estimate is not statistically different from 0.
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Appendix I. Variance/Covariance Matrices from Multidimensional Models8

Model 2
DCI ET UC

DCI 0.65240

ET 0.45983 0.61601

UC 0.55000 0.57838 0.80853

Model 3
DCI ET UC

DCI 0.46700

ET 0.37871 0.69195

UC 0.49650 0.80563 1.19231

Model 4
DCI ET UC

DCI 0.46686

ET 0.38217 0.68669

UC 0.49856 0.81916 1.17241

Model 5
DCI ET UC

DCI 0.45131

ET 0.36944 0.69704

UC 0.48287 0.80756 1.17209

8 The diagonal values are variances and the off-diagonal values are covariances.
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